
By David Austin
Freelance software engineer
United Kingdom

It’s commonly thought that the
timing of a linear speed ramp for
a stepper motor is too complex
to be calculated in real time. The
exact formula for the step delay
is in Equation 8. The solution
has been to store the ramp data
in precompiled arrays, but this
method is inflexible and wastes
memory. The alternative has
been to use a more powerful
and expensive processor than
otherwise needed or a high-
level stepper-control IC. This
article develops an accurate
approximation that has been
implemented in C using 24.8
fixed-point arithmetic on a mid-
range PIC microcontroller.

Motor step signals can be
generated by a 16-bit timer-com-
parator module as commonly
integrated in microcontrollers.
On the PIC, the CCP (capture/
compare/pwm) performs this
function. It allows steps to be
timed to the resolution of one
timer period. Each step advances
the motor by a constant incre-
ment, typically 1.8 degrees on a
hybrid stepper motor.

The timer frequency should
be as high as possible while
still allowing long delays as the
motor is accelerated from stop.
A timer frequency of 1MHz has
been used. A maximum mo-
tor speed of 300rpm is then
equivalent to a delay count of
1,000. It’s necessary to have high
timer resolution to give smooth
acceleration at high speed.

Notation and basic formulas
Delay (sec) programmed by timer
count c:

Equation 1

f = timer frequency (Hz).
Motor speed ω (rad/sec) at fixed
timer count c:

Equation 2

α = motor step angle (radian).
1rad = 180/π = 57.3deg. 1rad/sec
= 30/π = 9.55rpm.

Acceleration ω’ (rad/sec2)
from adjacent timer counts c1
and c2:

Equation 3

Equation 3 assumes fixed-
count speed (Equation 2) at the
midpoint of each step interval
(Equation 1), as on a linear ramp,
Figure 1. Note that ω’ resolution
is inversely proportional to the
cube of the speed.

Linear speed ramp—exact
On a linear ramp, acceleration ω’
is constant, and speed ω(t) = ω’.t.
Integration gives the motor shaft
angle θ(t):

Equation 4

n ≥ 0 step number (real). When
the shaft is at θ = n.α, (integer n)
it’s time for the nth step pulse:

Equation 5

The exact timer count to pro-
gram the delay between the nth
and (n+1)th pulses (n ≥ 0) is:

Equation 6

The initial count c0 factorises
out to give Equations 7 and 8:

Equation 7

Equation 8

Note that c0 sets the accelera-
tion, proportional to (1/c0)2 .

In real-time, Equation 8 would
require calculation of a square-
root for each step, with the added
problem of loss of precision by
subtraction.

Approximating linear ramp
Ratio of successive exact timer
counts from Equation 8:

Equation 9

Taylor series:

Equation 10

Equation 11 is the second-or-
der approximation to Equation 9
using Equation 10:

Equation 11

Figure 1: Ramp geometry: move of m=12 steps

�EE Times-India | January 2005 | eetindia.com

Generate stepper-motor
speed profiles in real time

SPEED PROFILES

http://www.eetindia.co.in

Equation 11 can be rearranged
for faster calculation:

Equation 12

Finally, we can disconnect the
physical step number, i, from the
step number n on a ramp from
zero, to give the general-pur-
pose ramp algorithm shown in
Equation 13. Here n determines
the acceleration and increments
with i for constant acceleration.
To ramp up from stop, ni = i,
i=1,2, . . . :

Equation 13

Negative n-values give decel-
eration. In particular, Equation
14, with ni = i - m, can be used
to ramp any speed down to stop
in the final steps of a move of m
steps:

Equation 14

Accuracy of approximation
Table 1 shows that the approxi-
mation is accurate even at low
step number n and relative error
decreases with n3. However, n=1
has a significant inaccuracy. The
inaccuracy at n=1 can be handled
in two ways:
• Treat n=1 as a special case.

Using c1 0.4056 c0 compen-
sates for the inaccuracies
at the start of the ramp and
allows Equation 7 to be used
to calculate c0.

• Ignore the inaccuracy. In place
of Equation 7 use Equation
15:

Equation 15

The first alternative gives an
almost perfect linear ramp. The
second alternative starts with a
fast step. This is to the good, as it
helps keep the motor moving be-
tween step pulses 0 and 1-and es-
tablishes the angle error needed
to generate torque. It also allows
a wider range of accelerations to
be generated with a 16-bit timer
and has the advantage of simplic-
ity. It's therefore recommended
to ignore the inaccuracy at n=1.

Figures 2 through 4 compare
the options for a target ramp
from 0 to 120rpm in 1sec. For
clarity, step changes in speed are
shown, calculated from Equation
2. The true profile should be close
to a straight line.

2.c/(4.n+1) in Equation 12
could be approximated by c/2.n.
Some effects would be:
• The algorithm would still

produce a linear ramp.
• c0 would be closer to the “ex-

act” value shown in Equation
7: 88.6% instead of 67.6% for
the same ramp acceleration.

• A single equation like Equa-
tion 13 could no longer be
used for both acceleration
and deceleration.

Changes of acceleration
From Equations 4 and 5 we can
obtain an expression for the step
number n as a function of speed
and acceleration:

Equation 16

Thus the number of steps
needed to reach a given speed
is inversely proportional to the
acceleration:

Equation 17

This makes it possible to
change the acceleration at a
point on the ramp by changing
the step number n in the ramp
algorithm Equation 13. Moreover,
using signed ω’ values results in
signed n-values that behave cor-
rectly in the algorithm. Only ω’ =
0 needs special handling.

The n-value given by Equa-
tion 17 is correct for tn. However
cn represents an average for the
interval tn .. tn+1. Equation 17 is
usually adequate, but it’s more
accurate to add a half-step to
n-values for use in the ramp
algorithm:

Equation 18

The numerical example shown
in Table 2 changes acceleration
from 10 to 5 and to -20rad/sec2
from step 200. Complex speed
profiles can be built up piecewise
in this way.

Step n Exact (9) Approx (11) Relative error

1 0.4142 0.6000 0.4485

2 0.7673 0.7778 0.0136

3 0.8430 0.8462 0.00370

4 0.8810 0.8824 0.00152

5 0.9041 0.9048 7.66E-4

6 0.9196 0.9200 4.41E-4

10 0.9511 0.9512 9.42E-5

100 0.9950 0.9950 9.38E-8

1,000 0.9995 0.9995 9.37E-11

Table 1: Accuracy of the step-delay approximation

Figure 3: Start of ramp detail

Figure 2: Stepper-motor speed ramp

� eetindia.com | January 2005 | EE Times-India

http://www.eetindia.co.in

Deceleration ramp
For a short move of m steps,
where the up-ramp at ω’1 meets
the down-ramp at ω’2 before
max speed is reached, the step
number m at which to start de-
celerating is, from Equation 17:

Equation 19

ω’1 = acceleration, ω’2 = de-
celeration (positive). Round n to
integer and calculate cn .. cm-1
using Equation 14.

In other cases, Equations 17
or 18 can be used to calculate
the number of steps n2 needed
to stop at deceleration ω’2, giv-
en that the present speed was
reached at step n1 with accel-
eration ω’1. Round n2 to integer
and calculate cm-n2 .. cm-1 using
Equation 14.

Smooth shift to max speed
The ideal speed profile would
make a smooth transition from
ramp acceleration ω’ to max
speed ωmax. Higher speed is pos-
sible by reducing the acceleration
near the top of the ramp, and you
can avoid possible undesirable
effects of a discontinuity in ac-
celeration.

There are several ways to
achieve a smooth transition while
still allowing real-time computa-
tion on a low-end processor:
• Reduce ω’ in stages, giving a

piecewise linear transition.
• Add a power term to the

denominator of the ramp
algorithm.

• Scale the change from ci-1 to
ci by a linear factor.

Now let’s compare these meth-
ods.

Piecewise linear
This method, shown in Figure
5, is very flexible. Any number
of breaks can be used. A set of
ω-values is chosen at which ω’ is
successively reduced. The ramp
algorithm in Equation 13 is used.
At each step, n is incremented,
and if ω (or c) crosses a break
value, n is recalculated.

Figure 5 results from the jth
break given by (c)j=0 = 3.cmin,
(c)j = ((c)j- 1+cmin)/2, (ni)j =
1.375.(ni- 1+1), j = 1,2,..,7. (c)j =
delay count at jth break, cmin, =
delay count at ωmax.

Power term
Equation 20 adds a power term
to the denominator of the ramp
algorithm (Equation 12):

Equation 20

At low speed (low step-num-
ber n), the power term k·np is
negligible, so acceleration is
constant. As speed rises, k·np
starts to dominate, eventually
reducing the acceleration to
zero. A higher power p produces
a sharper “knee.” The approach to
ωmax is asymptotic.

The transition occurs around
k·np = 4.n. This can be used to
calculate an approximate value
for the constant k from initial ac-
celeration ω’ and required max
speed ωmax:

Equation 21

The graphs in Figure 6 use
Equation 21 to calculate k for
p=2,3,4,5. The curve falls short

of ωmax for p=2 but k is good for
higher powers.

Linear factor
In this method we run the ramp
algorithm (Equation 12) up to step
n1 and then scale the changes in
c by a factor that reduces from 1
at step n1 to 0 at step n2:

The acceleration curve is fairly
linear and symmetrical over the
transition. ωmax is reached in
about twice the time taken with
no transition, as shown in Figure
7. ωmax can be estimated by
integrating a continuous version
of Equation 22,

Equation 22

. We obtain:

Equation 23

Equation 23 is accurate for a
wide range of parameters, in-
cluding n1=0. It then simplifies
to Equation 24 (compare with
Equation 16):

Equation 24

Step i ni ci (13) ω’ (3) notes
198 198 2,813.067

199 199
398.5

-100.25

2,806.008 10 1 0 . (1 9 9 + . 5) =
5 . (3 9 8 . 5 + . 5) =

-20.(-100.25+.5)
200 399.5 2,803.498 5
201 400.5 2,799.001 5

200 -99.25 2,820.180 -20
201 -98.25 2,834.568 -20

Table 2: Acceleration changes

Figure 4: End of ramp detail

�EE Times-India | January 2005 | eetindia.com

http://www.eetindia.co.in

In Figure 7, the linear factor
method is applied with transition
ranges starting at 0 and 30%, 50%,
and 70% of ωmax.

A linear-factor transition can
also be applied to the downramp:

Equation 25

Step-number n3, the start of
the transition from max speed
to the down-ramp, is calculated
as in the previous example. For a
short move, n3=n2, calculated by
Equation 19.

Figure 8 shows examples with
and without a section at ωmax:
m=700, ω’1 =10, ω’2 = -20, n1=0,
n2=432, n3=484; and m=500,
n2=n3=333, other parameters
unchanged.

Transition methods in sum
The form of the transition curve
is assumed to be less important
than ease of calculation and
control of parameters, particu-
larly ωmax and the size of the
transition region.

The piecewise-linear method
is flexible and can be arranged
to require no more calculation
than a simple ramp, and give a
visually smooth speed profile. It
may not work with some sets of
parameters, though.

In the power-term method,
the k-parameter is easily calcu-
lated from ωmax. Calculating the
power term creates problems in

fixed-point arithmetic, as values
vary over a wide range.

The linear-factor method is
recommended as reliable and
easy to calculate in fixed-point
arithmetic. Because ωmax is

reached at a known step num-
ber, the method is good for short
moves and can transition from
acceleration to deceleration with
no discontinuity, as Figure 8 dem-
onstrates. Starting the transition
at n1=0 gives a narrow transition
region, and it’s straightforward to
calculate n2 from ωmax.

The methods are compared in
Figures 5 through 7.

Implementation
You can implement this step-
per-control algorithm using a
PIC18F252 and a L6219. The
L6219 stepper driver IC performs
the following functions:
• Provides diode-protected

H-bridge drives capable of
46V/750mA to the two motor
windings

• Translates digital signals from
the PIC to current direction in
the motor windings (PHASE1,
2 inputs)

• Limits each winding current
to 0, 33%, 67%, or 100% of
a preset value by chopping
the drive to the H-bridge
transistors (inputs I01, I11,
I02, I12)

The maximum current is set
by a current-sense resistor for
each winding.

The L6219 doesn't have "step"
and "direction" control lines like
some stepper control ICs. The
winding phase sequence must be
provided by the PIC. This makes
control slightly more compli-

cated but gives extra flexibility
and reduces cost. It also means
that the phase can be restored
easily on power-up.

By using the I-inputs, the L6219
can be used for half- and quarter-
step operation. For full-step, they
can be tied together and driven by
one GPIO from the PIC.

Figure 6: Power term, p=2,3,4,5

Figure 7: Linear factor Figure 8: Linear factor: dual transitions

Figure 5: Piecewise

� eetindia.com | January 2005 | EE Times-India

http://www.eetindia.co.in

Microchip's PIC18F252 is a
28-pin device with the same
footprint as the PIC16F876. The
more powerful core of the '252
makes it easier to program in C.
Figure 9 shows how the internal
timing resources were configured
for controlling the L6219.

An 8MHz crystal and the PIC’s
×4 PLL frequency multiplier are
used to generate a 32MHz pro-
cessor clock. This is divided by
four to clock the timers at 8MHz.
Driving the motor involves the
following sequence:
1. Get parameters: step count,

direction, delay count c0, max
speed and so forth.

2. Set up hardware: initialise
CCP1 and CCP2, enable motor
current, enable CCP1 inter-
rupts.

3. Service CCP1 interrupts: count
the steps and execute a state

machine to reconfigure the
CCPs and calculate the next
timer value.

4. Clean up: after the last step,
disable CCP1 interrupts, cur-
rent off, flag the move done.

The listing (online at ftp://
ftp.embedded.com/pub/2005/
01austin/Motor.c) is a minimal
demo of these steps, with linear
ramps, fixed maximum speed
and accelerations. The author
used the CCS compiler. Minor
changes will be required for
other compilers.

Stepping out
The real-time algorithms I’ve
explained here significantly
reduce the processing power
needed for smooth speed con-
trol of stepper motors. The linear
ramp algorithm can be adapted
to piecewise linear speed profiles
and smooth transitions from
ramp to max speed.

Resources
Acarnley, Paul. Stepping Motors—
A Guide to Theory and Practice,
4th edition. London: Institution
of Electrical Engineers, 2002.

Kenjo, Takashi and Akira Suga-
wara. Stepping Motors and their
Microprocessor Controls, 2nd
edition. Oxford University Press,
March, 1995.

Control of Stepping Mo-
tors— A Tutorial www.cs.uiowa.
edu/~jones/step/

Suppliers’ Web sites:
PIC18F252 www.microchip.com
L6219 www.st.com
PIC C compiler www.ccsinfo.com
Stepper motors
w w w . r o t a l i n k . c o m
Mathcad (graphs) www.mathsoft.
com

Email Send inquiry

Figure 9: PIC18F252 timer configuration for L6219 interface

�EE Times-India | January 2005 | eetindia.com

ftp://ftp.embedded.com/pub/2005/01austin/Motor.c
ftp://ftp.embedded.com/pub/2005/01austin/Motor.c
ftp://ftp.embedded.com/pub/2005/01austin/Motor.c
http://www.cs.uiowa.edu/~jones/step/
http://www.cs.uiowa.edu/~jones/step/
http://www.microchip.com
http://www.st.com
http://www.ccsinfo.com
http://www.rotalink.com
http://www.mathsoft.com
http://www.mathsoft.com
http://www.eetindia.co.in/article/email_friend.php3?article_id=8800503136&type=TA&cat_id=1800001&back_url=%2Farticle%2Farticle_content.php3%3Fin_param%3D8800503136_1800001_TA_a4834a4e%26
http://www.eetindia.co.in/inquiry/send_inquiry.php3?article_id=8800503136&type=TA&title=Generate+stepper-motor+speed+profiles+in+real+time&cat_id=1800001
http://www.eetindia.co.in

