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It’s commonly thought that the 
timing of a linear speed ramp for 
a stepper motor is too complex 
to be calculated in real time. The 
exact formula for the step delay 
is in Equation 8. The solution 
has been to store the ramp data 
in precompiled arrays, but this 
method is inflexible and wastes 
memory. The alternative has 
been to use a more powerful 
and expensive processor than 
otherwise needed or a high-
level stepper-control IC. This 
article develops an accurate 
approximation that has been 
implemented in C using 24.8 
fixed-point arithmetic on a mid-
range PIC microcontroller. 

Motor step signals can be 
generated by a 16-bit timer-com-
parator module as commonly 
integrated in microcontrollers. 
On the PIC, the CCP (capture/
compare/pwm) performs this 
function. It allows steps to be 
timed to the resolution of one 
timer period. Each step advances 
the motor by a constant incre-
ment, typically 1.8 degrees on a 
hybrid stepper motor. 

The timer frequency should 
be as high as possible while 
still allowing long delays as the 
motor is accelerated from stop. 
A timer frequency of 1MHz has 
been used. A maximum mo-
tor speed of 300rpm is then 
equivalent to a delay count of 
1,000. It’s necessary to have high 
timer resolution to give smooth 
acceleration at high speed. 

Notation and basic formulas 
Delay (sec) programmed by timer 
count c: 

Equation 1 

f = timer frequency (Hz). 
Motor speed ω (rad/sec) at fixed 
timer count c: 

Equation 2 

α = motor step angle (radian). 
1rad = 180/π = 57.3deg. 1rad/sec 
= 30/π = 9.55rpm. 

Acceleration ω’ (rad/sec2) 
from adjacent timer counts c1 
and c2: 

Equation 3 

Equation 3 assumes fixed-
count speed (Equation 2) at the 
midpoint of each step interval 
(Equation 1), as on a linear ramp, 
Figure 1. Note that ω’ resolution 
is inversely proportional to the 
cube of the speed. 

Linear speed ramp—exact 
On a linear ramp, acceleration ω’ 
is constant, and speed ω(t) = ω’.t. 
Integration gives the motor shaft 
angle θ(t): 

Equation 4 

n ≥ 0 step number (real). When 
the shaft is at θ = n.α, (integer n) 
it’s time for the nth step pulse:
 

Equation 5 

The exact timer count to pro-
gram the delay between the nth 
and (n+1)th pulses (n ≥ 0) is: 

Equation 6 

The initial count c0 factorises 
out to give Equations 7 and 8:

 

Equation 7 

Equation 8

Note that c0 sets the accelera-
tion, proportional to (1/c0)2 . 

In real-time, Equation 8 would 
require calculation of a square-
root for each step, with the added 
problem of loss of precision by 
subtraction. 

Approximating linear ramp 
Ratio of successive exact timer 
counts from Equation 8: 

Equation 9 

Taylor series: 

Equation 10 

Equation 11 is the second-or-
der approximation to Equation 9 
using Equation 10: 

Equation 11 

Figure 1: Ramp geometry: move of m=12 steps 
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Equation 11 can be rearranged 
for faster calculation: 

Equation 12 

Finally, we can disconnect the 
physical step number, i, from the 
step number n on a ramp from 
zero, to give the general-pur-
pose ramp algorithm shown in 
Equation 13. Here n determines 
the acceleration and increments 
with i for constant acceleration. 
To ramp up from stop, ni = i, 
i=1,2, . . . : 

Equation 13 

Negative n-values give decel-
eration. In particular, Equation 
14, with ni = i - m, can be used 
to ramp any speed down to stop 
in the final steps of a move of m 
steps: 

    
Equation 14 

Accuracy of approximation
Table 1 shows that the approxi-
mation is accurate even at low 
step number n and relative error 
decreases with n3. However, n=1 
has a significant inaccuracy. The 
inaccuracy at n=1 can be handled 
in two ways: 
• Treat n=1 as a special case. 

Using c1 0.4056 c0 compen-
sates for the inaccuracies 
at the start of the ramp and 
allows Equation 7 to be used 
to calculate c0. 

• Ignore the inaccuracy. In place 
of Equation 7 use Equation 
15: 

Equation 15 

The first alternative gives an 
almost perfect linear ramp. The 
second alternative starts with a 
fast step. This is to the good, as it 
helps keep the motor moving be-
tween step pulses 0 and 1-and es-
tablishes the angle error needed 
to generate torque. It also allows 
a wider range of accelerations to 
be generated with a 16-bit timer 
and has the advantage of simplic-
ity. It's therefore recommended 
to ignore the inaccuracy at n=1. 

Figures 2 through 4 compare 
the options for a target ramp 
from 0 to 120rpm in 1sec. For 
clarity, step changes in speed are 
shown, calculated from Equation 
2. The true profile should be close 
to a straight line. 

2.c/(4.n+1) in Equation 12 
could be approximated by c/2.n. 
Some effects would be: 
• The algorithm would still 

produce a linear ramp. 
• c0 would be closer to the “ex-

act” value shown in Equation 
7: 88.6% instead of 67.6% for 
the same ramp acceleration. 

• A single equation like Equa-
tion 13 could no longer be 
used for both acceleration 
and deceleration. 

Changes of acceleration
From Equations 4 and 5 we can 
obtain an expression for the step 
number n as a function of speed 
and acceleration: 

Equation 16 

Thus the number of steps 
needed to reach a given speed 
is inversely proportional to the 
acceleration: 

Equation 17 

This makes it possible to 
change the acceleration at a 
point on the ramp by changing 
the step number n in the ramp 
algorithm Equation 13. Moreover, 
using signed ω’ values results in 
signed n-values that behave cor-
rectly in the algorithm. Only ω’ = 
0 needs special handling. 

The n-value given by Equa-
tion 17 is correct for tn. However 
cn represents an average for the 
interval tn .. tn+1. Equation 17 is 
usually adequate, but it’s more 
accurate to add a half-step to 
n-values for use in the ramp 
algorithm: 

Equation 18 

The numerical example shown 
in Table 2 changes acceleration 
from 10 to 5 and to -20rad/sec2 
from step 200. Complex speed 
profiles can be built up piecewise 
in this way. 

Step n Exact (9) Approx (11) Relative error 

1 0.4142 0.6000 0.4485 

2 0.7673 0.7778 0.0136 

3 0.8430 0.8462 0.00370 

4 0.8810 0.8824 0.00152 

5 0.9041 0.9048 7.66E-4 

6 0.9196 0.9200 4.41E-4 

10 0.9511 0.9512 9.42E-5 

100 0.9950 0.9950 9.38E-8 

1,000 0.9995 0.9995 9.37E-11 

Table 1: Accuracy of the step-delay approximation 

Figure 3: Start of ramp detail

Figure 2: Stepper-motor speed ramp
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Deceleration ramp
For a short move of m steps, 
where the up-ramp at ω’1 meets 
the down-ramp at ω’2 before 
max speed is reached, the step 
number m at which to start de-
celerating is, from Equation 17: 

Equation 19
 

ω’1 = acceleration, ω’2 = de-
celeration (positive). Round n to 
integer and calculate cn .. cm-1 
using Equation 14. 

In other cases, Equations 17 
or 18 can be used to calculate 
the number of steps n2 needed 
to stop at deceleration ω’2, giv-
en that the present speed was 
reached at step n1 with accel-
eration ω’1. Round n2 to integer 
and calculate cm-n2 .. cm-1 using 
Equation 14. 

Smooth shift to max speed 
The ideal speed profile would 
make a smooth transition from 
ramp acceleration ω’ to max 
speed ωmax. Higher speed is pos-
sible by reducing the acceleration 
near the top of the ramp, and you 
can avoid possible undesirable 
effects of a discontinuity in ac-
celeration. 

There are several ways to 
achieve a smooth transition while 
still allowing real-time computa-
tion on a low-end processor: 
• Reduce ω’ in stages, giving a 

piecewise linear transition. 
• Add a power term to the 

denominator of the ramp 
algorithm. 

• Scale the change from ci-1 to 
ci by a linear factor. 

Now let’s compare these meth-
ods. 

Piecewise linear
This method, shown in Figure 
5, is very flexible. Any number 
of breaks can be used. A set of 
ω-values is chosen at which ω’ is 
successively reduced. The ramp 
algorithm in Equation 13 is used. 
At each step, n is incremented, 
and if ω (or c) crosses a break 
value, n is recalculated. 

Figure 5 results from the jth 
break given by (c)j=0 = 3.cmin, 
(c)j = ((c)j- 1+cmin)/2, (ni)j = 
1.375.(ni- 1+1), j = 1,2,..,7. (c)j = 
delay count at jth break, cmin, = 
delay count at ωmax. 

Power term
Equation 20 adds a power term 
to the denominator of the ramp 
algorithm (Equation 12): 

Equation 20 

At low speed (low step-num-
ber n), the power term k·np is 
negligible, so acceleration is 
constant. As speed rises, k·np 
starts to dominate, eventually 
reducing the acceleration to 
zero. A higher power p produces 
a sharper “knee.” The approach to 
ωmax is asymptotic. 

The transition occurs around 
k·np = 4.n. This can be used to 
calculate an approximate value 
for the constant k from initial ac-
celeration ω’ and required max 
speed ωmax: 

Equation 21 

The graphs in Figure 6 use 
Equation 21 to calculate k for 
p=2,3,4,5. The curve falls short 

of ωmax for p=2 but k is good for 
higher powers. 

Linear factor
In this method we run the ramp 
algorithm (Equation 12) up to step 
n1 and then scale the changes in 
c by a factor that reduces from 1 
at step n1 to 0 at step n2: 

The acceleration curve is fairly 
linear and symmetrical over the 
transition. ωmax is reached in 
about twice the time taken with 
no transition, as shown in Figure 
7. ωmax can be estimated by 
integrating a continuous version 
of Equation 22, 
 

Equation 22 

. We obtain: 

Equation 23 

Equation 23 is accurate for a 
wide range of parameters, in-
cluding n1=0. It then simplifies 
to Equation 24 (compare with 
Equation 16): 

Equation 24 

Step i ni ci (13) ω’ (3) notes 
198 198 2,813.067   

199 199 
398.5 

-100.25 

2,806.008 10 1 0 . ( 1 9 9 + . 5 )   = 
5 . ( 3 9 8 . 5 + . 5 )   = 

-20.(-100.25+.5) 
200 399.5 2,803.498  5 
201 400.5 2,799.001 5 

200 -99.25 2,820.180 -20 
201 -98.25 2,834.568 -20 

Table 2: Acceleration changes 

Figure 4: End of ramp detail
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In Figure 7, the linear factor 
method is applied with transition 
ranges starting at 0 and 30%, 50%, 
and 70% of ωmax. 

A linear-factor transition can 
also be applied to the downramp: 

Equation 25 

Step-number n3, the start of 
the transition from max speed 
to the down-ramp, is calculated 
as in the previous example. For a 
short move, n3=n2, calculated by 
Equation 19. 

Figure 8 shows examples with 
and without a section at ωmax: 
m=700, ω’1 =10, ω’2 = -20, n1=0, 
n2=432, n3=484; and m=500, 
n2=n3=333, other parameters 
unchanged. 

Transition methods in sum 
The form of the transition curve 
is assumed to be less important 
than ease of calculation and 
control of parameters, particu-
larly ωmax and the size of the 
transition region. 

The piecewise-linear method 
is flexible and can be arranged 
to require no more calculation 
than a simple ramp, and give a 
visually smooth speed profile. It 
may not work with some sets of 
parameters, though. 

In the power-term method, 
the k-parameter is easily calcu-
lated from ωmax. Calculating the 
power term creates problems in 

fixed-point arithmetic, as values 
vary over a wide range. 

The linear-factor method is 
recommended as reliable and 
easy to calculate in fixed-point 
arithmetic. Because ωmax is 

reached at a known step num-
ber, the method is good for short 
moves and can transition from 
acceleration to deceleration with 
no discontinuity, as Figure 8 dem-
onstrates. Starting the transition 
at n1=0 gives a narrow transition 
region, and it’s straightforward to 
calculate n2 from ωmax. 

The methods are compared in 
Figures 5 through 7. 

Implementation
You can implement this step-
per-control algorithm using a 
PIC18F252 and a L6219. The 
L6219 stepper driver IC performs 
the following functions: 
• Provides diode-protected 

H-bridge drives capable of 
46V/750mA to the two motor 
windings 

• Translates digital signals from 
the PIC to current direction in 
the motor windings (PHASE1, 
2 inputs) 

• Limits each winding current 
to 0, 33%, 67%, or 100% of 
a preset value by chopping 
the drive to the H-bridge 
transistors (inputs I01, I11, 
I02, I12) 

The maximum current is set 
by a current-sense resistor for 
each winding. 

The L6219 doesn't have "step" 
and "direction" control lines like 
some stepper control ICs. The 
winding phase sequence must be 
provided by the PIC. This makes 
control slightly more compli-

cated but gives extra flexibility 
and reduces cost. It also means 
that the phase can be restored 
easily on power-up. 

By using the I-inputs, the L6219 
can be used for half- and quarter-
step operation. For full-step, they 
can be tied together and driven by 
one GPIO from the PIC. 

Figure 6: Power term, p=2,3,4,5 

Figure 7: Linear factor Figure 8: Linear factor: dual transitions 

Figure 5: Piecewise 
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Microchip's PIC18F252 is a 
28-pin device with the same 
footprint as the PIC16F876. The 
more powerful core of the '252 
makes it easier to program in C. 
Figure 9 shows how the internal 
timing resources were configured 
for controlling the L6219. 

An 8MHz crystal and the PIC’s 
×4 PLL frequency multiplier are 
used to generate a 32MHz pro-
cessor clock. This is divided by 
four to clock the timers at 8MHz. 
Driving the motor involves the 
following sequence: 
1. Get parameters: step count, 

direction, delay count c0, max 
speed and so forth. 

2. Set up hardware: initialise 
CCP1 and CCP2, enable motor 
current, enable CCP1 inter-
rupts. 

3. Service CCP1 interrupts: count 
the steps and execute a state 

machine to reconfigure the 
CCPs and calculate the next 
timer value. 

4. Clean up: after the last step, 
disable CCP1 interrupts, cur-
rent off, flag the move done. 

The listing (online at ftp://
ftp.embedded.com/pub/2005/
01austin/Motor.c) is a minimal 
demo of these steps, with linear 
ramps, fixed maximum speed 
and accelerations. The author 
used the CCS compiler. Minor 
changes will be required for 
other compilers. 

Stepping out
The real-time algorithms I’ve 
explained here significantly 
reduce the processing power 
needed for smooth speed con-
trol of stepper motors. The linear 
ramp algorithm can be adapted 
to piecewise linear speed profiles 
and smooth transitions from 
ramp to max speed. 

Resources
Acarnley, Paul. Stepping Motors— 
A Guide to Theory and Practice, 
4th edition. London: Institution 
of Electrical Engineers, 2002. 

Kenjo, Takashi and Akira Suga-
wara. Stepping Motors and their 
Microprocessor Controls, 2nd 
edition. Oxford University Press, 
March, 1995. 

Control  of  Stepping Mo-
tors— A Tutorial www.cs.uiowa.
edu/~jones/step/ 

Suppliers’ Web sites:
PIC18F252 www.microchip.com 
L6219 www.st.com 
PIC C compiler www.ccsinfo.com 
Stepper motors 
w w w . r o t a l i n k . c o m 
Mathcad (graphs) www.mathsoft.
com

Email   Send inquiry

Figure 9: PIC18F252 timer configuration for L6219 interface 
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